Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.

Identifieur interne : 000775 ( Main/Exploration ); précédent : 000774; suivant : 000776

Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.

Auteurs : Petra Haunhorst [Allemagne] ; Eva-Maria Hanschmann ; Lars Br Utigam ; Oliver Stehling ; Bastian Hoffmann ; Ulrich Mühlenhoff ; Roland Lill ; Carsten Berndt ; Christopher Horst Lillig

Source :

RBID : pubmed:23615448

Descripteurs français

English descriptors

Abstract

The mechanisms by which eukaryotic cells handle and distribute the essential micronutrient iron within the cytosol and other cellular compartments are only beginning to emerge. The yeast monothiol multidomain glutaredoxins (Grx) 3 and 4 are essential for both transcriptional iron regulation and intracellular iron distribution. Despite the fact that the mechanisms of iron metabolism differ drastically in fungi and higher eukaryotes, the glutaredoxins are conserved, yet their precise function in vertebrates has remained elusive. Here we demonstrate a crucial role of the vertebrate-specific monothiol multidomain Grx3 (PICOT) in cellular iron homeostasis. During zebrafish embryonic development, depletion of Grx3 severely impairs the maturation of hemoglobin, the major iron-consuming process. Silencing of human Grx3 expression in HeLa cells decreases the activities of several cytosolic Fe/S proteins, for example, iron-regulatory protein 1, a major component of posttranscriptional iron regulation. As a consequence, Grx3-depleted cells show decreased levels of ferritin and increased levels of transferrin receptor, features characteristic of cellular iron starvation. Apparently, Grx3-deficient cells are unable to efficiently use iron, despite unimpaired cellular iron uptake. These data suggest an evolutionarily conserved role of cytosolic monothiol multidomain glutaredoxins in cellular iron metabolism pathways, including the biogenesis of Fe/S proteins and hemoglobin maturation.

DOI: 10.1091/mbc.E12-09-0648
PubMed: 23615448
PubMed Central: PMC3681695


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.</title>
<author>
<name sortKey="Haunhorst, Petra" sort="Haunhorst, Petra" uniqKey="Haunhorst P" first="Petra" last="Haunhorst">Petra Haunhorst</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Clinical Cytobiology and Cytopathology, Faculty of Medicine, Philipps-Universität, 35037 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Clinical Cytobiology and Cytopathology, Faculty of Medicine, Philipps-Universität, 35037 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanschmann, Eva Maria" sort="Hanschmann, Eva Maria" uniqKey="Hanschmann E" first="Eva-Maria" last="Hanschmann">Eva-Maria Hanschmann</name>
</author>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
</author>
<author>
<name sortKey="Stehling, Oliver" sort="Stehling, Oliver" uniqKey="Stehling O" first="Oliver" last="Stehling">Oliver Stehling</name>
</author>
<author>
<name sortKey="Hoffmann, Bastian" sort="Hoffmann, Bastian" uniqKey="Hoffmann B" first="Bastian" last="Hoffmann">Bastian Hoffmann</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23615448</idno>
<idno type="pmid">23615448</idno>
<idno type="doi">10.1091/mbc.E12-09-0648</idno>
<idno type="pmc">PMC3681695</idno>
<idno type="wicri:Area/Main/Corpus">000744</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000744</idno>
<idno type="wicri:Area/Main/Curation">000744</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000744</idno>
<idno type="wicri:Area/Main/Exploration">000744</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.</title>
<author>
<name sortKey="Haunhorst, Petra" sort="Haunhorst, Petra" uniqKey="Haunhorst P" first="Petra" last="Haunhorst">Petra Haunhorst</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Clinical Cytobiology and Cytopathology, Faculty of Medicine, Philipps-Universität, 35037 Marburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Clinical Cytobiology and Cytopathology, Faculty of Medicine, Philipps-Universität, 35037 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanschmann, Eva Maria" sort="Hanschmann, Eva Maria" uniqKey="Hanschmann E" first="Eva-Maria" last="Hanschmann">Eva-Maria Hanschmann</name>
</author>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
</author>
<author>
<name sortKey="Stehling, Oliver" sort="Stehling, Oliver" uniqKey="Stehling O" first="Oliver" last="Stehling">Oliver Stehling</name>
</author>
<author>
<name sortKey="Hoffmann, Bastian" sort="Hoffmann, Bastian" uniqKey="Hoffmann B" first="Bastian" last="Hoffmann">Bastian Hoffmann</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Embryo, Nonmammalian (embryology)</term>
<term>Embryo, Nonmammalian (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Hemoglobins (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Iron Regulatory Protein 1 (metabolism)</term>
<term>Iron Regulatory Protein 2 (metabolism)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>RNA Interference (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Zebrafish (embryology)</term>
<term>Zebrafish (genetics)</term>
<term>Zebrafish (metabolism)</term>
<term>Zebrafish Proteins (genetics)</term>
<term>Zebrafish Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Danio zébré (embryologie)</term>
<term>Danio zébré (génétique)</term>
<term>Danio zébré (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Embryon non mammalien (embryologie)</term>
<term>Embryon non mammalien (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Hémoglobines (métabolisme)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Protéine-1 de régulation du fer (métabolisme)</term>
<term>Protéine-2 de régulation du fer (métabolisme)</term>
<term>Protéines de poisson-zèbre (génétique)</term>
<term>Protéines de poisson-zèbre (métabolisme)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Glutaredoxins</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Glutaredoxins</term>
<term>Hemoglobins</term>
<term>Iron</term>
<term>Iron Regulatory Protein 1</term>
<term>Iron Regulatory Protein 2</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Danio zébré</term>
<term>Embryon non mammalien</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Embryo, Nonmammalian</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Danio zébré</term>
<term>Glutarédoxines</term>
<term>Protéines de poisson-zèbre</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryo, Nonmammalian</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Danio zébré</term>
<term>Embryon non mammalien</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Hémoglobines</term>
<term>Protéine-1 de régulation du fer</term>
<term>Protéine-2 de régulation du fer</term>
<term>Protéines de poisson-zèbre</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>HeLa Cells</term>
<term>Homeostasis</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
<term>Molecular Sequence Data</term>
<term>RNA Interference</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Données de séquences moléculaires</term>
<term>Homéostasie</term>
<term>Humains</term>
<term>Interférence par ARN</term>
<term>Microscopie de fluorescence</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mechanisms by which eukaryotic cells handle and distribute the essential micronutrient iron within the cytosol and other cellular compartments are only beginning to emerge. The yeast monothiol multidomain glutaredoxins (Grx) 3 and 4 are essential for both transcriptional iron regulation and intracellular iron distribution. Despite the fact that the mechanisms of iron metabolism differ drastically in fungi and higher eukaryotes, the glutaredoxins are conserved, yet their precise function in vertebrates has remained elusive. Here we demonstrate a crucial role of the vertebrate-specific monothiol multidomain Grx3 (PICOT) in cellular iron homeostasis. During zebrafish embryonic development, depletion of Grx3 severely impairs the maturation of hemoglobin, the major iron-consuming process. Silencing of human Grx3 expression in HeLa cells decreases the activities of several cytosolic Fe/S proteins, for example, iron-regulatory protein 1, a major component of posttranscriptional iron regulation. As a consequence, Grx3-depleted cells show decreased levels of ferritin and increased levels of transferrin receptor, features characteristic of cellular iron starvation. Apparently, Grx3-deficient cells are unable to efficiently use iron, despite unimpaired cellular iron uptake. These data suggest an evolutionarily conserved role of cytosolic monothiol multidomain glutaredoxins in cellular iron metabolism pathways, including the biogenesis of Fe/S proteins and hemoglobin maturation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23615448</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.</ArticleTitle>
<Pagination>
<MedlinePgn>1895-903</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E12-09-0648</ELocationID>
<Abstract>
<AbstractText>The mechanisms by which eukaryotic cells handle and distribute the essential micronutrient iron within the cytosol and other cellular compartments are only beginning to emerge. The yeast monothiol multidomain glutaredoxins (Grx) 3 and 4 are essential for both transcriptional iron regulation and intracellular iron distribution. Despite the fact that the mechanisms of iron metabolism differ drastically in fungi and higher eukaryotes, the glutaredoxins are conserved, yet their precise function in vertebrates has remained elusive. Here we demonstrate a crucial role of the vertebrate-specific monothiol multidomain Grx3 (PICOT) in cellular iron homeostasis. During zebrafish embryonic development, depletion of Grx3 severely impairs the maturation of hemoglobin, the major iron-consuming process. Silencing of human Grx3 expression in HeLa cells decreases the activities of several cytosolic Fe/S proteins, for example, iron-regulatory protein 1, a major component of posttranscriptional iron regulation. As a consequence, Grx3-depleted cells show decreased levels of ferritin and increased levels of transferrin receptor, features characteristic of cellular iron starvation. Apparently, Grx3-deficient cells are unable to efficiently use iron, despite unimpaired cellular iron uptake. These data suggest an evolutionarily conserved role of cytosolic monothiol multidomain glutaredoxins in cellular iron metabolism pathways, including the biogenesis of Fe/S proteins and hemoglobin maturation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Haunhorst</LastName>
<ForeName>Petra</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute for Clinical Cytobiology and Cytopathology, Faculty of Medicine, Philipps-Universität, 35037 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanschmann</LastName>
<ForeName>Eva-Maria</ForeName>
<Initials>EM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bräutigam</LastName>
<ForeName>Lars</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stehling</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Bastian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mühlenhoff</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lillig</LastName>
<ForeName>Christopher Horst</ForeName>
<Initials>CH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C404105">GLRX3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029961">Zebrafish Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D035941">Iron Regulatory Protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D035942">Iron Regulatory Protein 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004625" MajorTopicYN="N">Embryo, Nonmammalian</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006454" MajorTopicYN="N">Hemoglobins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035941" MajorTopicYN="N">Iron Regulatory Protein 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035942" MajorTopicYN="N">Iron Regulatory Protein 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029961" MajorTopicYN="N">Zebrafish Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23615448</ArticleId>
<ArticleId IdType="pii">mbc.E12-09-0648</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E12-09-0648</ArticleId>
<ArticleId IdType="pmc">PMC3681695</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Nutr. 1986;6:13-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3524613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Jun 22;49(24):4945-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20481466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 Mar 28;102(6):711-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 May;31(10):2040-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Nov 2;14(5):647-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22055506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2006 May 15;107(10):4159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16424395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 1995 Jul;203(3):253-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 May;10(5):629-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Sep 15;270(37):21645-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7665579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Mar 14;1331(1):1-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 1973 Jun;81(3):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4736586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2009;456:209-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 30;326(5953):718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19762596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(15):5675-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Apr;29(8):2219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Jun;11(6):806-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 30;326(5953):722-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19762597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Apr 15;267(11):7936-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1560022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1810(1):2-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 9;142(1):24-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20603012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Jul 1;397(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16548850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2006 Aug 4;99(3):307-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2010 May 15;25(7):846-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20461801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2008 Dec;45(6):796-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18929570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Hematol. 2010;2010:605435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Nutr. 2006 Mar;1(1):25-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18850218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;372:325-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Aug;2(8):406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16850017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Jun;76(6):2853-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">111244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Sep;28(17):5517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 4;45(26):7998-8008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2010 May;21(5):302-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20060739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2008;28:197-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18489257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<name sortKey="Hanschmann, Eva Maria" sort="Hanschmann, Eva Maria" uniqKey="Hanschmann E" first="Eva-Maria" last="Hanschmann">Eva-Maria Hanschmann</name>
<name sortKey="Hoffmann, Bastian" sort="Hoffmann, Bastian" uniqKey="Hoffmann B" first="Bastian" last="Hoffmann">Bastian Hoffmann</name>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
<name sortKey="Stehling, Oliver" sort="Stehling, Oliver" uniqKey="Stehling O" first="Oliver" last="Stehling">Oliver Stehling</name>
</noCountry>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Haunhorst, Petra" sort="Haunhorst, Petra" uniqKey="Haunhorst P" first="Petra" last="Haunhorst">Petra Haunhorst</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000775 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000775 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23615448
   |texte=   Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23615448" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020